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Abstract: The effects of noise on patterns and collective phenomena are studied in a small-world 

neuronal network with the dynamics of each neuron being described by a two-dimensional Rulkov 

map neuron. It is shown that for intermediate noise levels, noise-induced ordered patterns emerge 

spatially, which supports the spatiotemporal coherence resonance. However, the inherent long range 

couplings of small-world networks can effectively disrupt the internal spatial scale of the media at 

small fraction of long-range couplings. The temporal order, characterized by the autocorrelation of a 

firing rate function, can be greatly enhanced by the introduction of small-world connectivity. There 

exists an optimal fraction of randomly rewired links, where the temporal order and synchronization 

can be optimized.  
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1. Introduction 

 

The brain is a complex network on multiple spatial and time scales. Neural assemblies such as local 

networks of neurons transiently linked by selective interactions are considered to be largely distributed 

and linked to form a network [Varela et al. 2001]. For example, a single neuron in the vertebrate 

cortex may connect to more than ten thousands postsynaptic neurons via synapses in the forming of 

complex neural networks [Gerstner W and Kistler WM 2002]. Some experiments have shown that the 

brain can exhibit a small-world network [Bassett DS and Bullmore E 2006]. It supports both 

segregated and distributed information processing. Analysis of the different networks shows that the 

distribution of functional connections and the probability of finding a link versus distance are both 

scale-free. Moreover, it displays the small characteristic path length and the large clustering 

coefficient, which are the typical properties of small-world networks. Therefore, it is feasible to 

employ networks to investigate the complex phenomena of neural systems observed in the brain 

cortex. 

Recently, much attention has been paid to the networks with variable random connectivity. 

Increasing the randomness of the network topology leads to an enhancement of temporal coherence 

and spatial synchronization of the neuronal networks [Zheng et al. 2008; Sun et al. 2008; Gong et al. 

2006; Kwon et al. 2002]. Effects of small-world connectivity on noise-induced spatial patterns in 

two-dimensional continuous neuronal networks have also been investigated in [Perc 2005a; Perc 

2007a]. Spatiotemporal evolution and resonance dynamics of small-world networks have further been 

extended to other excitable systems [Perc 2007b, 2007c, Perc 2008, Perc M, Ozer M, Uzuntarla M 

2009]. It was shown that the introduction of long range couplings can induce decoherence of 
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otherwise coherent noise-induced spatial patterns in the network with regular connectivity. Effects of 

randomness on chaos and order of coupled logistic maps was considered in [Savi 2007]. Stochastic 

and coherence resonance phenomena were already studied in one-dimensional networks with 

small-world connectivity [Gao et al. 2001]. In both cases, it was reported that the introduction of 

shortcut links between randomly chosen sites can increase the global synchrony of the network. 

However, little attention has been paid to the explicit analysis of effects of the small-world 

connectivity on the noise-induced pattern formation and order in two-dimensional discrete neuronal 

networks. 

Two-dimensional Rulkov map neuronal networks have been regarded as alternative models for 

investigating the complex dynamics of neuronal systems. It seems that the analysis of complex 

neurobiological networks is computationally efficient by means of a map neuron model. Dynamical 

behaviors of map neuron networks that interconnected by synaptic currents are very similar to those 

found with Hodgkin–Huxley models and in experiments [Rulkov et al. 2004]. Spatial order out of 

noise has been extensively investigated and profound phenomena have been explored [Perc 2005b, 

Perc 2005c, Perc M and Marhl M 2005]. Patterns and collective phenomena are studied in networks of 

nonhomogeneous oscillatory neurons and mixtures of oscillatory and excitable neurons, with 

dynamics of each neuron described by a two-dimensional (2D) Rulkov map neuron [Wang et al. 2007]. 

It is shown that as the coupling strength is increased, typical patterns emerge spatially, which 

propagate through the networks in the form of beautiful target waves or parallel ones depending on the 

size of networks. The influence of diversity on the dynamics of spiking in spatially extended systems 

with global or diffusive couplings, which is locally modeled by a Rulkov map neuron, has been 

investigated and the enhancement of neuronal coherence by diversity can be shown in the coupled 

models [Chen et al. 2008]. In the present paper, we will investigate the effects of the noise and 

small-world connectivity on pattern formation and order in two-dimensional discrete networks.  

  The rest is organized as follows. In Sections 2, we introduce the network of map neurons. The 

spatiotemporal coherence resonance and firing synchronization of the given network are studied in 

section 3. Finally, the conclusion is made in section 4. 

 

2 Network of map neurons 

 

  The dynamics of the Rulkov neuronal network with small-world connectivity and noises can be 

described by the following equations, 
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( , ) ( )i jx n is the membrane potential of the neuron labeled ( , )i j , and 
( , ) ( )i jy n is the variation of ion 

concentration. These represent the fast and slow dynamics, respectively. The slow evolution of 

( , ) ( )i jy n is due to the small values of the positive parameters  and  . By 



choosing 0.001 1   , we thus know that
( , ) ( )i jy n changes slowly in comparison 

with
( , ) ( )i jx n . n is the discrete time series, while  are control  parameters of the networks. 

Moreover, 
( , )i j is additive spatiotemporal Gaussian noise with zero mean, white in space and time, 

and variance 
2D  [García-Ojalvo et al. 1999], and D is noise level . The sum in equation (1) runs 

over all lattice sites, whereby 1ijkl   if the site (k, l) is coupled to (i, j), whilst otherwise 0ijkl  . 

If the fraction of randomly introduced shortcuts, i.e. rewired links, p equals zero, 1ijkl  only if (k, l) 

indexes one of the four nearest neighbours of site (i, j). Thereby, we obtain a diffusively coupled 

regular spatial network of excitable units, whereby the coupling coefficient g equals the diffusion 

constant and periodic boundary conditions of the coupling are used such that the networks studied are 

spatially extended square lattices. In addition, the long-rang connections are introduced to investigate 

spatiotemporal dynamics of the neuronal networks. To do this, the existing links that form the basic 

square lattice will be cut and then rewired to some other neurons on top of the basic nearest-neighbor 

interactions. Namely, if p > 0, the corresponding fraction of links is randomly rewired, i.e. indexes k 

and l are shuffled for a given fraction p of randomly chosen sites (i, j), keeping 1ijkl  to form a 

spatial network with small-world connectivity, as described in [Perc 2007; Watts et al. 1998].  

Nonlinear dynamics of an individual Rulkov map neuron, which depends on the control 

parameter  has been extensively investigated [Rulkov 2001]. Results showed that when the 

parameter   is changed, the neuron exhibits rich firing behaviors, such as silent, periodic and/or 

chaotic spiking, spiking-bursting behaviors. For   < 2.0, the map exhibits a single excitable steady 

state. For  > 2.0, the excitable steady state loses its stability via a Hopf bifurcation, and then the 

neuron begins to oscillate. By setting = 1.99, the system thus occupies the excitable steady state (x∗, 

y∗) = (−1,−1.995), which are also the initial conditions we will use in all subsequent calculations. In 

what follows, we investigate the firing synchronization and order behaviors in the network with 

small-world connection. 

 

3. Spatiotemporal coherence resonance and firing synchronization 

 

In this section, we study noise-induced temporal and spatial dynamics of the system. Initially, 

without randomly rewired links, that is, p=0, characteristic snapshots of the spatial profile of x for 

three different noise levels D, are presented in the upper row of Fig. 1 to envision the spatial dynamics 

of the Rulkov map neuronal networks. By inspecting the spatial profiles in the upper row of Fig. 1, it 

is obvious that there indeed exist an intermediate value of D, at which the coherent pattern formation 

in the media is resonantly pronounced; yielding well-ordered circular waves in the spatial profile of x 

(see Fig. 1 (b1)). On the other hand, smaller D is unable to excite the system strong enough to evoke 

any particular spatial dynamics in the media, whilst for larger D the pattern formation becomes 

disordered so that the spatial profile again lacks any visible structure or order. Furthermore, in order to 

capture the essence of spatiotemporal dynamics by presenting time traces of a firing rate function  , 

which simply measures the fraction of spatial units that have values of variable x above a certain 

threshold xth = -0.1 at any given time t. It can be described as follows: suppose that m neurons fire at 



the given discrete time n, then we define a function
2

m

N
  . Clearly,  = 0 means that none of the 

spatial elements is perturbed strongly enough for x to exceed xth, whilst  = 1 indicates that all spatial 

units are simultaneously in the excitable state, which constitutes global synchrony and thus 

corresponds to the most ordered temporal dynamics of the studied neuronal networks. Firing rate 

functions corresponding to the presented spatial profiles are shown in the bottom row of Fig. 1. It is 

shown that for D= 0.0018 the firing-rate function   varies nearly period in time, indicating some 

extended of noise-induced spatial order in the system. In addition, its maximum value 0.1093   

indicates the fact that at most only 10.93% of all spatial units can be simultaneously driven to the 

excitable state. When the noise intensity is increased to 0.0024, the number of firing neurons is 

increased and there are at most 20.06% of all neurons driven to spike at some certain time. 

    

            (a1)                      (b1)                         (c1) 

 
 

            (a2)                       (b2)                         (c2) 

Fig. 1. Noise-induced spatiotemporal (bottom row) and spatial (upper row) dynamics in the 

exclusively diffusive coupled neuronal network (p = 0) for various noise levels: (a) D = 0.0013, (b) D 

= 0.0018, (c) D = 0.0024. Spatial profiles are depicted on a 128*128 square grid. Here g=0.003. 

 

To enable a quantitative analysis of the observed phenomenon outlined in Fig. 1, we calculate the 

structure function of the system according to the equation 
2( , ) ( , ) ,x y x yQ k k H k k                                                     (2) 

where ( , )x yH k k is the spatial Fourier transform of the x-field at a particular t and   is the 

ensemble average over noise realizations. It is evident that space structure function Q can be 

interpreted as the space power spectrum of the system. The results from numerical simulations for 

different noise levels are presented in Fig. 2. The three depicted panels correspond to the same values 

of couple strength as used already in Fig. 1. From Figs. 2 (a) and 2(c), it can be observed nicely that 

for small and large noise levels the presented spectra show no particularly expressed spatial frequency.  



Only for intermediate levels of noise the spatial structure function develops several well-expressed 

circularly symmetric rings, indicating the existence of a preferred spatial frequency induced by 

additive Gaussian noise. As the noise level is increased, random fluctuations start to dominate the 

spatial dynamics and thus, similar as by small noise levels, the characteristic waterfall-like outlay of 

( , )x yQ k k vanishes and no preferred spatial frequency can be inferred.  

 
            (a)                        (b)                           (c) 

Fig.2. The spatial structure function of 
( , )i jx obtained for (a) D = 0.0013, (b) D = 0.0018, (c) D = 

0.0024. Here g=0.003, p=0. 

 

Moreover, we exploit the circular symmetry of the structure function by calculating the circular 

average of ( , )x yQ k k according to the equation 

( ) ( ) ,

k

kq k Q k d
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where ( , )x yk k k and
k  is a circular shell of radius | |k k . Figure 3 shows three ( )q k obtained 

for the same values of p and D as used in Fig. 2. In accordance with results published recently [4], it 

can be observed that for p = 0 and D = 0.0018 there exists a particular spatial frequency, marked with 

the thin dashed line at k = kmax, that is greatly enhanced for intermediate D. On the other hand, the 

fingerprint of spatial coherence reduces substantially for D = 0.0024 (note that the peak at k = kmax it 

disappears completely). To quantify the ability of each D to extract the characteristic spatial 

frequency of the medium more precisely, we calculate the signal-to-noise ratio (SNR) as 

the peak height at kmax normalized with the background fluctuations in the system; namely 
~

max( ) / ,SNR q k q where 
~

max max

1
[ ( ) ( )]

2
a bq q k k q k k     is an approximation for the 

level of background fluctuations in the system, whereby 
ak and 

bk  mark the 

estimated width of the peak around kmax at the optimal D. This is the spatial counterpart of 

the measure frequently used for quantifying constructive effects of noise in the temporal 

domain of dynamical systems, whereas a similar measure for quantifying effects of noise 

on the spatial dynamics of spatially extended systems was also used in. Figure 4 shows 

how the SNR varies with D. It is evident that there exists an optimal level of additive 

Gaussian noise for which the peak of the circularly averaged structure function is best 

resolved, thus clearly indicating the existence of spatial coherence resonance in the 

square-lattice map neuronal network. 



 
Fig. 3. The circular averages of structure functions presented in Fig. 2. Here g=0.003, p=0. 

 

 
Fig. 4. The dependence of signal-to-noise ratio (SNR) on D. Here g=0.003, p=0. 

 

Next, we analyze the noise-induced temporal and spatial dynamics of the system also for p > 0, that 

is, small-world coupled networks. We start the study by visually inspecting four characteristic spatial 

profiles of x obtained by various p at a near optimal D for noise-induced pattern formation in the 

studied excitable media. Results presented in Fig. 5 clearly show that increasing values of p hinder 

coherent pattern formation. Importantly, whilst spatial profiles obtained by p = 0 and p = 0.001 present 

compelling evidences of noise-induced self-organization in excitable neuronal networks and 

qualitatively differ only minutely, substantial spatial decoherence can be visually assessed already at p 

=0.005. Thus if only 0.5% of all links constituting the planar network are randomly rewired, 

spatiotemporal noisy perturbations are unable to induce coherent patterns in the neuronal networks. At 

p = 0.01, the spatial decoherence is pronounced even more profoundly, thus indicating the destructive 

nature of increasing values of p on the noise-induced spatial dynamics. Although the intermediate 

values of D are no longer able to induce coherent pattern formation in the spatial domain, there 

appears nearly perfect synchrony, i.e., temporal order, in the system, as shown in bottom row of Fig. 5. 

Similarly as by p = 0,   varies periodically in time. 



 

             (a1)                       (b1)                         (c1) 

 
              (a2)                      (b2)                          (c2) 

Fig. 5. Noise-induced temporal (bottom row) and spatial (upper row) dynamics in a small-world 

diffusive coupled (D= 0.0018) media for various fractions p of randomly rewired links: (a) p = 0.0001, 

(b) p = 0.005, (c) p = 0.01. Spatial profiles are depicted on a 128*128 square grid. Here g=0.003. 

    

In what follows, we will quantify the temporal order in the media more precisely. We calculate the 

autocorrelation of the firing-rate function   according to the 

equation

~ ~

2~

( ) ( )
( ) ,

t t
C

  




  


 

~

      . One can see from Fig. 5 that the correlations are 

indeed much more pronounced for the moderate fractions p of randomly rewired links. To describe 

this effect with a single quantity, the characteristic correlation time 
c can be evaluated by the formal 

equation 2

0
( )c C t dt



  ( Pikovsky et al. 1997). The curve of 
c versus p is displayed in Fig. 6 for 

g=0.003, D=0.0018. There is a clear peak in the curve, indicating the occurrence of clearly ordered 

temporal behavior. This shows that the system dynamics can exhibit somewhat resonant behavior with 

an optimal level of p.  

 

Fig. 6. Correlation time 
c  versus fractions p of randomly rewired links for the Rulkov neuronal 

network with g=0.003, D=0.0018. 



 

4. Conclusion 

In summary, the effects of noise and the small-world connectivity on spatial unit are studied in 

Rulkov map neuronal networks. It is shown that collective behavior, such as various 

spatiotemporal patterns and firing synchronization can be observed in noisy environment. It is 

also found that noise can induce spatial coherence resonance in the diffusive neuronal network.  

However, the small-world connectivity of spatial units facilitates global synchronization of 

excitatory events and thus temporal order in the system, whereas, on the other hand hinders coherent 

patter formation. The constructive effect of small-world connectivity on the temporal order is argued 

to originate from the effective shortening of typical path lengths between arbitrary spatial units, which 

facilitates information transduction among distant parts of the network, while the disordering effect on 

the spatial scale is attributed to the small-world networks that can effectively disrupts the internal 

spatial scale of the media already at small p.  

For neural systems, it has been argued that excitable media guarantee robust signal propagation 

through the tissue in a substantially noisy environment (Izhikevich 2000). Results presented in this 

paper can be important guidance for understanding and controlling pathological types and evolution 

of waves in human brain. 
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